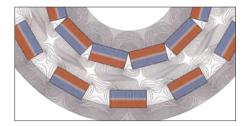
MAGNETIC COUPLINGS TYPES AND OPERATING DESCRIPTION

General information



General description

MINEX®-S magnetic couplings transmit the torque without contact through magnetic forces between the internal and external rotor. They ensure a hermetic seperation between driving and driven side in pumps and agitators sealing critical liquids and gases reliably. As a result they prevent serious leakages operating as a reliable alternative to usual dynamic shaft seals.

Run of flux lines

Operation/structure

The coupling consists of an external and an internal rotor. The external rotor has high-quality, permanent magnets of changing polarity on the inner side and the internal rotor has them on the outside.

The external rotor is normally fixed on the drive side and the magnets are glued in the keyways. The magnets of the internal rotor on the driven side are fully encapsulated.

Torque transmission

In their non-operative states the north and south poles of the rotors are opposite to each other and the magnetic field is completely symmetric. It is only when the rotors are twisted that the magnetic field lines are moved, hence the torque is transmitted through the air gap. Then there is a synchronous operation under a constant torsion angle.

If the maximum coupling torque and the maximum torsion angle are exceeded, the power transmission is interrupted.

Containment shroud

Sealing function

The containment shroud that is fixed to the housing separates internal and external rotor from each other.

It ensures a completely leak-proof separation of product and atmosphere.

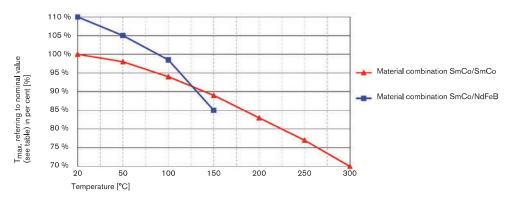
The sealing is achieved statically, e. g. with a flat seal or an O-ring, thus eliminating the need to use dynamically loaded sealing elements.

As a standard KTR supplies both metallic and non-metallic containment shrouds. The metallic types cover the widest application range, yet causing eddy current losses which might require cooling measures.

If eddy current losses can be definitely excluded, the energy-efficient alternative materials PEEK and ceramics are available.

Use in potentially explosive atmospheres

MINEX[®] couplings are suitable for power transmission in drives in potentially explosive atmospheres. The types with metallic, ceramic and PEEK containment shrouds are assessed and approved as components of category **II** according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

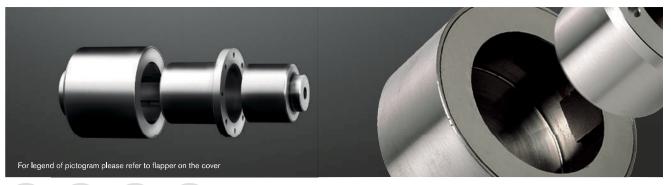

Please read through our information included in the respective Type Examination Certificate and the operating and mounting instructions at **www.ktr.com**.

MAGNETIC COUPLINGS TYPES AND OPERATING DESCRIPTION

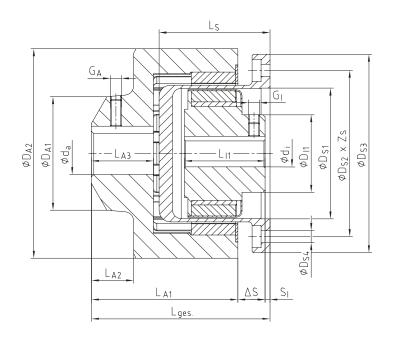
Properties of magnetic couplings

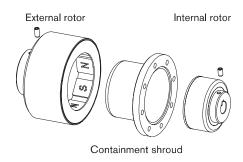
Product	Type with metallic containment shroud	Type with conta made o		Type with containment shroud made of oxide ceramics
Туре		Permanent-magnetic	synchronous coupling	
Properties				
Permanent-magnetic	•)	•
Contactless	•	•)	•
Maintenance-free	•			•
Torsionally flexible	•	•		•
Low vibrations	•			•
Special features/applications				
	Most common type		No eddy cu	irrent losses
	Covering the widest performance range		Energy-efficien	t and economic
	Particularly suitable for pump drives/		Particularly suitab	ble for dry running
	Applications with liquids	For low deman	ds on t _{max} [°C]	High t _{max} [°C] and p _{max} [bar]
	High t _{max} [°C] and p _{max} [bar]	and p _m	_{ax} [bar]	
Torque range T _{KN} [Nm]				
Max.	1,000	37	'0	550
Max. pressure resistance [bar]				
p _{max} .	Up to 90 bar depending on size	Up to 16 bar de	pending on size	Up to 25 bar depending on size
Geometries				
Shaft diameter min./max. [mm]	Ø5 pilot bored	Ø5 pilo	t bored	Ø5 pilot bored
Max. temperature resistance [°C]				
^t max.	150/300 depending on magnet material	13	80	300
Certifications/type examinations				
ATEX Ex	•	CFRP reinforce- ment	GRP reinforce- ment	•
	For further details see catalogue pages 218 - 221		ner detai l s pages 222 - 223	For further details see catalogue pages 224 - 225

Torque reduction with temperature increase



Temporary torque reduction with increased temperature for alternative material combinations [%].


Please note:


KTR recommends to use NdFeB magnets for the external rotor, provided that the operating temperature falls below 150 °C.

Containment shroud - material stainless steel

				Techn	ical data	– Interna	l rotor an	d contair	nment sh	roud				
							D	imensions [m	m]					
Size	T _{K max} [Nm]				Internal rotor	r					Containm	ent shroud		
Size	with 20 °C		ore ¹⁾ dj				5	ગે						
		Min.	Max.	DI1	41	GI	Min.	Max.	DS1	DS2	DS3	DS4	ZS	LS
SA 22/4	0.15	5	9	20	20	M3	2.0	2.0	21.5	38	46	4.5	8	29
SA 34/10	1	5	12	20	22	MЗ	2.0	5.5	34	46	55	4.5	4	30.5
SA 46/6	3	8	16	28	33	M4	6.5	7.0	46	64	78	4.5	8	45
SA 60/8	7	12	22	35	36.3	M5	1.7	5.5	59	75	89	5.5	0	50
SB 60/8	14	12	22	36	56	M5	0.0	4.0	59	75	89	5.5	8	70.3

				Technic	al data – Ex	ternal rotor	and genera	I			
						Dimensions [m	m]				
Size				Exter	rnal rotor					General	
Size	Finish b	ore ¹⁾ d _a								Lto	otal
	Min.	Max.	D _{A1}	D _{A2}	GA	LA1	L _{A2}	LA3	ΔS	Min.	Max.
SA 22/4	5	11	18	38	M4	35	8.5	11	5	42	42
SA 34/10	5	14	22	53	M4	38.8	10.5	13	5.3	46	49.5
SA 46/6	5	24	40	69.5	M5	53	16	22	9	69	69.5
SA 60/8	9	32	50	94.5	M6	66	19	28	10	80	83.3
SB 60/8	9	38	50	94.5	M8	93.3	15	30	12	105.2	109.2

¹⁾ Bores H7 with keyway to DIN 6885 sheet 1 [JS9]

	MINEX® SA 60/8	NdFeB	d _i Ø20 mm	d _a Ø24 mm
Ordering example:	Coupling size	NdFeB - t _{max.} = 150 °C Sm2Co17 - t _{max.} = 300 °C		ather keyway acc. to heet 1 (JS9)

MINEX[®] couplings with containment shroud made of stainless steel are the most common type for pump drives and other applications with liquids in the lower performance range. Subject to their high resistance to pressure and temperature they cover a wide application range. The magnetic rotors are available from stock in an unbored or pilot bored design. If requested, the parts can be finish bored according to ISO fit H7 and provided with feather keyway to DIN 6885 sheet 1 [JS9].

Inside the rotating magnetic field metallic containment shrouds generally cause losses of eddy current which are converted into heat and which may require cooling measures. On applications with pumps the heat generated can basically be dissipated by the medium to be pumped. If higher pressure resistance than covered by the KTR standard is required, KTR provide for customized special solutions.

Typical applications: gear pumps, centrifugal pumps, screw spindle pumps, agitators, PU foaming lines

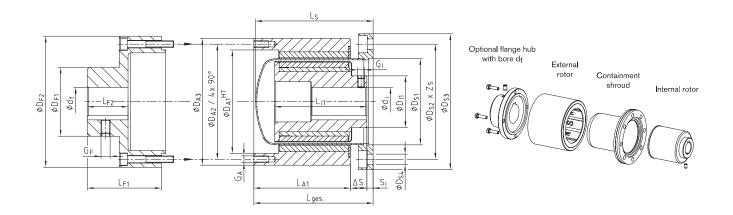
Use in potentially explosive atmospheres

MINEX[®] couplings with containment shroud made of stainless steel are suitable for power transmission in drives in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

⟨€x⟩ II 2G c IIC T X

If the couplings operate in potentially explosive atmospheres, the user has to provide for special measures. Please read through our information included in the respective Type Examination Certificate and the operating and assembly instructions at **www.ktr.com**.

			Technical	data – Materi	ials, tempera	ture and pres	ssure resistar	nce		
			Internal rotor		(Containment shrou	d	External ro	otor (+ flange hub	optionally)
Size	T _{K max} [Nm] with 20 °C	Standard	d material	Max. temperature	Standard	l materia l	Max. pressure	Standard	d material	Max. temperature
	With 20 0	Hub	Magnets	t _{max.} [°C]	Hub	Cont. shroud	P _N /P _{max.} [bar]	Hub	Magnets	t _{max.} [°C]
SA 22/4	0.15	1.4462	NdFeB	150	1.4571	1.4571	60/90	S355J2	NdFeB	150
SA 34/10	1	1.4462	NdFeB	150	1.4571	1.4571	16/24	S355J2	NdFeB	150
SA 46/6	3	1.4571	Sm2Co17	300	1.4571	1.4571	16/24	S355J2	Sm2Co17	300
SA 60/8	7	1.4571	Sm2Co17	300	1.4571	1.4571	40/60	S355J2	Sm2Co17*	300
SB 60/8	14	1.4571	Sm2Co17	300	1.4571	1.4571	40/60	S355J2	Sm2Co17*	300


*) External rotor alternatively available with magnets made of NdFeB (t_{max.} = 150 °C)

Containment shroud – material Hastelloy

			Technica	data - Materi	als, tempera	ture and pres	ssure resistan	ice		
			Internal rotor			Containment shrou	ıd	External r	otor (+ flange hul	o optiona ll y)
Size	T _{K max} [Nm] with 20 °C	Standard	d material	Max. temperature	Standar	d material	Max. pressure	Standar	d materia l	Max. temperature
	with 20 C .	Hub	Magnets	t _{max} [°C]	Hub	Cont. shroud	P _N /P _{max.} [bar]	Hub	Magnets	t _{max.} [°C]
SA 75/10	10	1.4571	Sm2Co17	300	1.4571	2.4602**	25/37.5	S355J2	Sm2Co17*	300
SB 75/10	24	1.4571	Sm2Co17	300	1.4571	2.4602**	25/37.5	S355J2	Sm2Co17*	300
SC 75/10	40	1.4571	Sm2Co17	300	1.4571	2.4602**	25/37.5	S355J2	Sm2Co17*	300
SA 110/16	25	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SB 110/16	60	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SC 110/16	95	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SB 135/20	100	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SC 135/20	145	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SD 135/20	200	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17*	300
SC 165/24	210	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17	300
SD 165/24	280	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17	300
SE 165/24	370	1.4571	Sm2Co17	300	1.4571	2.4856	25/37.5	S355J2	Sm2Co17	300
SD 200/30	430	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SE 200/30	550	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SD 250/38	670	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SE 250/38	820	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300
SF 250/38	1000	1.4571	Sm2Co17	300	1.4571	2.4856	16/24	S355J2	Sm2Co17	300

*) External rotor alternatively available with magnets made of NdFeB (t_{max} = 150 °C) **) Containment shroud size 75 alternatively available made of stainless steel 1.4571 (P_N/P_{max} = 16/24 bar)

	MINEX [®] SB 75/10	NdFeB	d _i Ø20 mm	d _a Ø24 mm	Hastelloy
Ordering example:	Coupling size	NdFeB - t _{max.} = 150 °C Sm2Co17 - t _{max.} = 300 °C	Finish bore (H7) acc. to D I N 688		Containment shroud type stainl. steel 1.4571 or Hastelloy

C

MINEX[®] couplings with containment shroud made of Hastelloy are the most common type for pump drives and other applications with liquids in the average and higher performance range. Subject to their high resistance to pressure and temperature they cover a wide application range.

Inside the rotating magnetic field metallic containment shrouds generally cause losses of eddy current which are converted into heat and which may require cooling measures. On applications with pumps the heat generated can basically be dissipated by the medium to be pumped. If higher pressure resistance than covered by the KTR standard is required, KTR provide for customized special solutions.

Typical applications: gear pumps, centrifugal pumps, screw spindle pumps, agitators, PU foaming lines

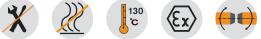
Use in potentially explosive atmospheres

MINEX[®] couplings with containment shroud made of Hastelloy are suitable for power transmission in drives used in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

⟨€x⟩ II 2G c IIC T X

If the couplings operate in potentially explosive atmospheres, the user has to provide for special measures. Please read through our information included in the respective Type Examination Certificate and the operating and assembly instructions at **www.ktr.com**.

MINEX[®]-S


								Tecl	nnica	al da	ta –	Exte	ernal	roto	or an	d ge	neral										
												[Dimens	sions [mm]												
		h	nterna	l roto	r				Con	tainme	ent shr	oud			Ext	erna l r	rotor			F	lange	hub				Gener	a
Size	Finish	bore 1)	D _{l1}	41	GI	5	ŝ	D _{S1}	DS2	DS3	DS4	ZS	LS	D _{A1}	D _{A2}	DA3	L _{A1}	GA	d _{f max} .	DF1	D _{F2}	L _{F1}	L _{F2}	GF	ΔS	Total le (with flai	ength ²⁾ nge hub)
	d _{i min.}	d _{i max.}				Min.	Max.																			Min.	Max.
SA 75/10				39.5			46.5										41.3								12.2	140	164.5
SB 75/10	12	32	45	58	M6	4	26.5	75	100	118	9	8	102	90	100	110	61.3	M6	42	60	114	64.5	35.5	M8	12.2	142	104.5
SC 75/10				80			4.0										83.8								14.2	166.5	166.5
SA 110/16				45			55.0										41.3									177.5	
SB 110/16	14	55	80	65	M8	4	35.0	110	133	153	9	12	115	126	135	145	61.3	M6	55	85	150	99.5	59.5	M10	18.7	183.5	214.5
SC 110/16				85			15.0										81.3									203.5	
SB 135/20				65			50.5										70.3								18.2	190.5	
SC 135/20	20	70	90	85	M10	4	30.5	135	158	178	9	16	139	150	160	170	90.3	M6	70	100	170	65.5	48.5	M12	10.2	190.5	204.5
SD 135/20				110			8.0										110.3								20.7	200.5	
SC 165/24				85			61.5										90.3								18.2	233	
SD 165/24	24	80	110	110	M12	6	39.0	163.5	192	218	11	12	170	180	188	198	110.3	M6	75	110	198	77	60	M16	20.7	200	247
SE 165/24				130			19.0										130.3								20.7	234	
SD 200/30				135			24.0	200	252	278	11	12	190	010	222	232	130.3	M6	80	100	232	100	0.00	M12	05.7	282	300
SE 200/30	38	90	130		M16	6		200	252	270		12	130	212	222	232		1010	30	120	232	120	30	10112	23.7	202	300
SD 250/38				115			46.0										110.3									282	
SE 250/38	38	100	165	135	M16	6	26.0	255	285	315	13.5	12	182	272	282	292	130.3	M6	100	150	300	140	93	M16	25.7	302	322
SF 250/38				155			6.0										150.3									322	

 $^{\scriptscriptstyle (1)}$ Bores H7 with keyway to DIN 6885 sheet 1 [JS9]

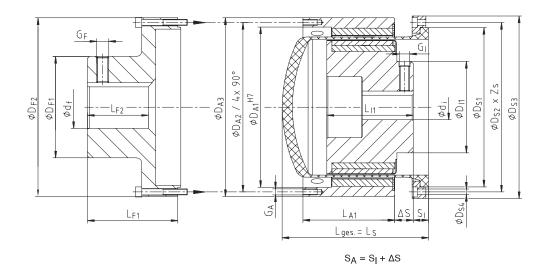
²⁾ Total length without flange hub = L_S

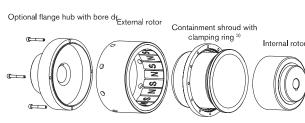
Containment shroud – material PEEK

				Technic	al data –	Internal	rotor and	l contain	ment shr	oud				
							Dim	ensions [mn	ן]					
Size	TK max [Nm]			Ir	nternal rotor						Containme	ent shroud		
Size	with 20 °C	Finish b	ore ¹⁾ dj				9	ŝ						
		Min.	Max.	DI1	L 1	G	Min.	Max.	DS1	D _{S2}	D _{S3}	DS4	ZS	$L_S = L_{total}$
SA 75/10	10				39.5		8.5	54.5						108
SB 75/10	24	12	32	45	58	M6	0.0	34.5	99.9	115	135	9	8	
SC 75/10	40				80		5.5	10.0						
SA 110/16	30				45			46.0						115
SB 110/16	70	14	55	80	65	M8	4	26.0	140	151	168	9	12	
SC 110/16	100				85			6.0						
SB 135/20	110				65			48.0						144
SC 135/20	155	20	70	90	85	M10	4	28.0	157	167	180	5.5	12	
SD 135/20	210				110			4.0						
SC 165/24	220				85		4	32.0						156
SD 165/24	300	24	80	110	110	M12	4	8.0	196	210	225	6.6	12	136
SE 165/24	390				130		-5	-5.0						165

					Tech	inical data – Externa	l rotor, fl	ange hub	and ger	neral				
						Dimensions [mm	1]							
		E	xternal rot	or			F	lange hub					Genera	
Size	D _{A1}	D _{A2}	D _{A3}	L _{A1}	GA	Max. finish bore ¹⁾ d _f	D _{F1}	D _{F2}	LF1	LF2	GF	ΔS		ength ²⁾ .nge hub)
													Min.	Max.
SA 75/10				41.3								12.2	148.5	172.5
SB 75/10	90	100	110	61.3	M6	42	60	114	64.5	35.5	M8	12.2	148.5	172.5
SC 75/10				83.8								14.2	168	172.5
SA 110/16				41.3									165.5	193.5
SB 110/16	130	138	150	61.3	M6	55	85	153	87.5	45.5	M10	18.7	172.5	193.5
SC 110/16				81.3									191.5	193.5
SB 135/20				70.3								18.2	216	225.5
SC 135/20	158	167	176	90.3	M6	70	100	176	89	67	M12	10.2	216	225.5
SD 135/20				110.3								20.7	224	224
SC 165/24				90.3								18.5	231	234.8
SD 165/24	186	195	204	110.3	M6	75	110	204	94	70	M16	21	231	233.3
SE 165/24				130.3								21	254.3	254.3

 $^{\rm 1)}$ Bores H7 with keyway to DIN 6885 sheet 1 [JS9] $^{\rm 2)}$ Total length without flange hub = LS $^{\rm 10}$


					Technical of	lata					
Circ.	TK max	Interna	al rotor		Conta	inment shroud					al rotor ıb optionally)
Size	[Nm] with 20 °C	Standard	d material	Standard	d material	Max. pressure	Max. te	emperature		Standard	d material
	20 0	Hub	Magnets	Hub	Cont. shroud	P _N /P _{max.} [bar]	t _m	ax. [°C]	÷	Hub	Magnets
SA 75/10	10	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Sa	355J2	NdFeB
SB 75/10	24	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Sa	355J2	NdFeB
SC 75/10	40	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Sa	355J2	NdFeB
SA 110/16	30	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Sa	355J2	NdFeB
SB 110/16	70	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	SS	355J2	NdFeB
SC 110/16	100	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	SS	355J2	NdFeB
SB 135/20	110	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Sa	355J2	NdFeB
SC 135/20	155	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	SS	355J2	NdFeB
SD 135/20	210	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	S	355J2	NdFeB
SC 165/24	220	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Se	355J2	NdFeB
SD 165/24	300	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Se	355J2	NdFeB
SE 165/24	390	1.4571	Sm2Co17	Aluminium	PEEK	see table	se	e table	Sa	355J2	NdFeB
0.1.1		MINEX® S	B 75/10	Nd	IFeB	d _i Ø20	mm	d _a Ø24	mm		PEEK
Orderii examp	•	Couplir	ng size	NdFeB – t _m Sm2Co17 – t	_{nax.} = 150 °C t _{max.} = 300 °	Finish bore C to DI		eather keywa sheet 1 (JSS		C. Containment shroud typ	


MINEX[®] couplings with countainment shroud made of PEEK are an economic, energy-efficient alternative to the metallic types. They do not generate any eddy current losses and as a result do not generate any heat so that usually expensive cooling measures can be done without. Moreover, they are characterized by low susceptibility to fracture, low weight and easy handling. They are ideally suitable for applications with low demands on temperature and pressure resistance.

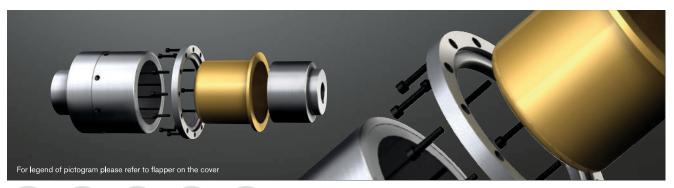
Typical applications: vacuum pumps, fan drives, compressors, agitators, PU foaming lines

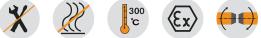
Depending on pressure and temperature resistance

Temperature	Perm. nominal/	testing pressure
[°C]	P _N [bar]	P _{max.} [bar]
40	14	21
70	13	19.5
100	12	18
130	10	15

³⁾ Containment shroud size 75 also available as a one-piece design!

Use in potentially explosive atmospheres


MINEX[®] couplings with containment shrouds made of carbon fibre reinforced PEEK are suitable for power transmission in drives in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

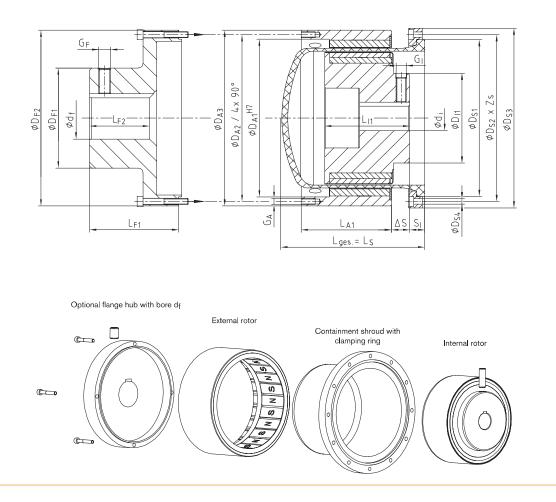

⟨€x⟩ II 2G c IIC T X

If the couplings operate in potentially explosive atmospheres, the user has to provide for special measures. Please read through our information included in the respective Type Examination Certificate and the operating and assembly instructions at **www.ktr.com**.

Containment shroud - material oxide ceramics

Technical data – Internal rotor and containment shroud														
			Dimensions [mm]											
0.	T _{K max} [Nm]		Internal rotor							Containment shroud				
Size with 20 °C		Finish bore ¹⁾ dj					S							
		Min.	Max.	DI1	Ц1	G	Min.	Max.	DS1	DS2	D _{S3}	DS4	ZS	LS = Ltota
SA 110/16	30				45			48.0						
SB 110/16	70	14	55	72	65	M8	4	28.0	132	151	168	9	12	115
SC 110/16	100				85			9.0						
SB 135/20	110				65			46.5						
SC 135/20	155	20	70	90	85	M10	4	26.5	157	167	180	5.5	12	143
SD 135/20	210				110			4.0						
SC 165/24	220				85			28.0						150
SD 165/24	300	24	90	110	110	M12	4	4.0	196	210	225	6.6	12	150
SE 165/24	390				130			17.0						185
SD 200/30	430	38	90	130	135	M16	4	4.0	229	246	265	9	12	185
SE 200/30	550	30	90	130	135	IVI I O	4	4.0	229	240	205	9	12	100

	Technical data – External rotor, flange hub and general																		
Dimensions [mm]																			
	External rotor Flange hub								External rotor Flange hub								General		
Size						Max. finish bore ¹⁾ d _f	D _{F1}	DF2	DF2 LF1	1 LF2	GF	ΔS	Total length ²⁾ (with flange hub)						
										Min.	Max.								
SA 110/16				41.3									165.5	195.5					
SB 110/16	130	138	150	61.3	M6	55	85	153	87.5	45.5	M10	18.7	171.5	195.5					
SC 110/16				81.3									191.5	196.5					
SB 135/20				70.3								18.2	215	224					
SC 135/20	158	167	176	90.3	M6	70	100	176	89	67	M12	10.2	215	224					
SD 135/20				110.3								20.7	220	220					
SC 165/24				90.3								18.5	225	230.5					
SD 165/24	186	195	204	110.3	M6	75	110	204	94	70	M16	20.7	229	229					
SE 165/24				130.3								20.7	260	260					
SD 200/30	220	230	240	130.3	M6	80	120	240	120	88	M16	25.7	280	280					
SE 200/30	220	230	240	100.0	1010	00	120	240	120			20.7	200	200					


¹⁾ Bores H7 with keyway to DIN 6885 sheet 1 [JS9] ²⁾ Total length without flange hub = L_S

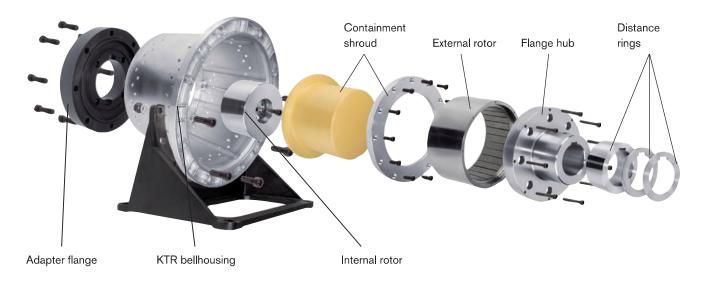
Technical data										
			Internal rotor		Containment shroud			External rotor (+ flange hub optionally)		
Size	T _{K max} [Nm] with 20 °C			Max. temperature	Standard material		Max. pressure	Standard	l materia l	Max. temperature
	With 20 0	Hub	Magnets	t _{max.} [°C]	Hub	Cont. shroud	P _N /P _{max.} [bar]	Hub	Magnets	t _{max.} [°C]
SA 110/16	25	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SB 110/16	60	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SC 110/16	95	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SB 135/20	100	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SC 135/20	145	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SD 135/20	200	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SC 165/24	210	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SD 165/24	280	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SE 165/24	370	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SD 200/30	430	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300
SE 200/30	550	1.4571	Sm2Co17	300	Aluminium	ZrO2MgO	25/37.5	S355J2	Sm2Co17	300

.	MINEX® SB 135/20	NdFeB	d _i Ø20 mm		Oxide ceramics ZrO ₂ MgO
Ordering example:	Coupling size	NdFeB - t _{max.} = 150 °C Sm2Co17 - t _{max.} = 300 °C	Finish bore (H7), f to DIN 6885	eather keyway acc. sheet 1 (JS9)	Containment shroud type

Like with the types with containment shroud made of PEEK, MINEX[®] couplings with containment shroud made of ceramics are an economic, energy-efficient alternative to the metallic types. Again they do not generate any eddy current losses and as a result do not generate any heat so that usually expensive cooling measures can be done without. Compared to PEEK, the containment shrouds made of ceramics are characterized by higher resistance to pressure and an excellent temperature resistance.

Typical applications: vacuum pumps, fan drives, compressors, agitators, PU foaming lines

Use in potentially explosive atmospheres


MINEX[®] couplings with containment shrouds made of oxide ceramics are suitable for power transmission in drives in potentially explosive atmospheres. They are assessed and approved as components of category II according to EU directive 2014/34/EU and thus suitable for the use in potentially explosive atmospheres of zone 2G.

⟨Ēx⟩ II 2G c IIC T X

Please read through our information included in the respective Type Examination Certificate and the operating and assembly instructions at **www.ktr.com**.

Conversion kits and customized subassemblies

On request KTR provide customized solutions in combination with KTR hydraulic components, allowing to easily retrofit existing systems by MINEX[®]-S.

Conversion kits for PUR foaming processes

When conveying and proportioning the media polyol and isocyanate in the processing plants for PUR, ambient air has to be prevented from penetrating into the process, since otherwise adverse reactions may be generated.

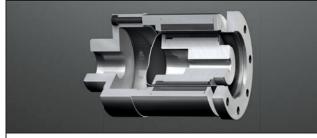
For a reliable sealing of such drives KTR provides standard conversion kits, among others for axial piston pumps type REXROTH A2VK and ROTARY POWER C series offering the following benefits:

- Maintenance-free operation
- Standstill periods are considerably reduced
- No more problems with sealing
- Better efficiency and process reliability

The subassemblies are available for all motor-pump-combinations and in various materials.

Maintenance-free sealing of proportioning pumps for polyde and isocyanate in high-pressure reaction casting machines

Pump data		Moto	r data (4 poles, n=1500	rpm)	Coupling data			
Pump	Туре	Engine	Power [kW]	Torque T _N	Size	Max. torque T _{K max}	Bellhousing	
		132 S	5.5	35 Nm	SB 110/16	60 Nm		
	A2VK-12	132 M	7.5	48 Nm	SC 110/16	95 Nm	PL 300/13/	
		160 M	11	70 Nm	SC 135/20	145 Nm		
		160 M	11	70 Nm	SC 135/20	145 Nm		
	A2VK-28	160 L	15	96 Nm	SD 135/20	200 Nm	PL 350/7	
REXROTH A2VK		180 M	18.5	118 Nm	SD 135/20	200 Nm		
		160 L	15	96 Nm	SC 165/24	210 Nm	PL 350/7/	
		180 M	18.5	118 Nm	SC 165/24	210 Nm	PL 350/7/	
	A2VK-55	180 L	22	144 Nm	SD 165/24	280 Nm	PL350/7/	
		200 L	30	196 Nm	SE 165/24	280 Nm	PL400/5/	
		225 S/M	37/45	240/292 Nm	SE 165/24	370 Nm	PL450/3/	
	A2VK-107	225 S/M	37/45	240/292 Nm	SE 165/24	370 Nm	PL400/5/	
	C 01	100L	2.2	14 Nm	SB 75/10	24 Nm	PK 250/13/	
	C 04	132 M	7.5	48 Nm	SC 110/16	95 Nm	PL300/13/	
ROTARY POWER C-Range	C 07	132 S	5.5	35 Nm	SB 110/16	60 Nm	PL300/13/	
RUTART POWER C-Range	C 07	132 M	7.5	48 Nm	SC 110/16	95 Nm	PL300/13/	
	C 99	160 L	15	96 Nm	SD 135/20	200 Nm	PL 350/7/	
	C20	180 M	18.5	118 Nm	SD 135/20	200 Nm	PL 350/7/	


Other types

Disk coupling

With this type the magnets are arranged opposite to each other in axial direction. This type becomes relevant if there is only little axial mounting space and a flat separating wall between the rotors is requested.

MINEX[®]-**S** fully made of stainless steel If requested, KTR supplies MINEX[®]-S fully made of stainless steel. The magnets of the external rotor are encapsulated just like with the internal rotor. Applications: roller conveyors, winder drives, etc.

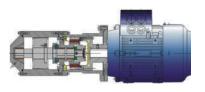
Hysteresis coupling MINEX®-H

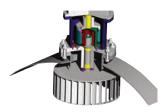
Different from the MINEX[®]-S magnetic coupling this type switches to slipping operation once the maximum transmittable torque has been achieved, while it continues to transmit Tmax as a holding torque. Applications: roller conveyors, winder drives, etc.

Customized special solutions

If requested, KTR supplies MINEX®-S in combination with the slide bearing required for the driven shaft.

Magnetic couplings


Use of MINEX®-S on a small centrifugal pump


Retrofitting of a gear pump with MINEX[®] SA 75/10, bellhousing PK 200/30, foot flange and damping rod

MINEX[®]-S for sealing homogenizers for heavy oil processing in marine operation

 $\mathsf{MINEX}^{\otimes}\text{-}\mathsf{S}$ for sealing of autoclaves (T.B.M./STERICHEM) in laboratories and hospitals

Technical data for coupling selection/selection of components

Motor type		Pump type	
Driving power	kW	Speed	rpm
Pressure	bar	Temperature	°C
Viscosity of medium	mm²/s	Max. perm. dimensions	ØD x L _{total}